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The Preparation of (a-Alkylidene)tetrahydrofurans by Tungsten 
’ Catalyzed Decarboxylation of Aldol Precursors 

Tomoya Tanzawa and Jeffrey Schwartz* 

We recently noted a method for the stereospecific synthesis of olefms from 3-hydroxycarboxylic acids 

which is based on W(Vl) complex catalysis and which involves in siru generated Blactone intemtediates.l Since 

these W(VI) complex catalysts am Lewis acidic, we were interested to learn if acid-labile functionality could 

survive this reagent system.2 Accordingly, we examined our methodology in the context of (a- 

alkylidene)tetrahydrofuran synthesis from appropriate hydroxy acid precursors. We find that such sensitive 

products can indeed be prepared under catalytic conditions, and that qualitative relative rates for product 

formation are in accord with observations3 and predictions4 made .for decarboxylation of simple p-lactone 

analogs. Tetra-, tri-, and dialkyl substituted olefins were all made with comparable ease, including cases in 

which spirocyclic ~lactone intermediates occuntd; in contrast, (a-alkylidene)tetrahydrofurans were formed far 

more slowly, and only when dialkyl or activated phenyl substitution were present at C(4). 

3-Hydroxycarboxylic acid precursors were prepared5 by aldol condensation between the dianion of 

tetrahydro2-furoic acid and an aldehyde or ketone. 6 For example, an approximately 1:l mixtute of rhreo- 

3-hydroxycarboxylic acid 2a (Rt = H, R2 = Ph) and its etyrhro isomer (RI = Ph; R2 = H) was obtained when 

the dianion of 1 was treated with benzaldehyde. Only the fhreo isomer could be isolated by column 

chromatography (the eryrko isomer apparently decomposed during chromatograph& separation on the silica). 

When 2a (44 mg. 0.2 mmol) was reacted with a catalytic amount (3.4 mg, 0.01 mmol. 0.05 equiv) of WCC& at 

150 “C for 15 hrs in acetonitrilc, cnol ether 4a7 (6:4 mg, 0.04 mmol,,20%) and hydrolysis product* 

hydroxyketone 5a9 (5.3 mg, 0.8 mmol. 15%) wem separated. The yield of 49 was improved by simply adding 

Proton Sponge@ (0.2 equivalent) to the reaction medium. 

Reactivities of rhreo and eryfhro hydroxycarboxylic acidslo were comparable, and we note facile 

isomerixation between E and Z isomers of 4, chloroform solutions of pute isomers equilibrated (E Z = 1:5) in 

several hours (X = OMe) to a few days (X = NO,) at room temperatum. As expected for an asynchronous 

transition state for ~lactone deca&oxylation,4 qualitative relative rates for olefin synthesis from para-substituted 

analogs of 2a varied as CH30 (2b) > H > NOg (2~). l2 Decarboxylation of independently prepared12J3 

Dlactones proceeded much faster than overall enol ether formation, so decarboxylation can not be rate limiting 
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for the overall reaction and p-lactone concentration did not build up during this process. Therefore it seems 

likely that tungsten-catalyzed ~lactone synthesis, too, correlates with donor properties of “R”, since these donor 

properties should affect the nucleophillcity of the hydroxyl group in the context of the lactonixation step; 

apparently, oxygen substitution at C(3) inductively retards both proces~es.~~ 
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Reaction Reaction Yield 

Hydroxy Acid 2 .Temp. (“C) Time (hr) (%) 4 E : Z Turnovers 

RI = H; R2 = Ph, 2a (three) ., 1508 72 50 1:5 10 

Rl=Ph;Rg=H 1508 72 50 1:5 10 

+ 2a (1:l) 

RI= H; R2 = GjH@CH3,2b 14O’J 24 50 1:5 10 

Rl=QH&CH3;R~=H 14011 24 63 1:5 13 

+ 2b (1:l) 

R~=H;R~=C~H~N~,~C 165s 100 15 1:5 3.0 

Rl=QH@I@;R2=H 165a loo 12 1:5 2.4 

+ 2c (1:l) 

RI = Rg = (cI-&, 2d lsob 24 50 - 5.0 

RI =R2=C!Hg12e 145p 24 27 - 2.7 

RI= R2 = CH3CH2,2f 15ob 20 36 - 3.6 

a 0.05 equiv. WOCLO.2 equiv. Proton Sponge ;h 0.1 equiv. WOCl.410.5 equiv. Proton Sponge 
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