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Catalyzed Decarboxylation of Aldol Precursors
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Abstract. A series of substituted (-alkylidene)tetrahydrofurans was prepared by tungsten catalyzed reaction of
substituted hydroxyfuroic acids. These reactions likely involve 8-lactone intermediates which decarboxylate under
the reaction conditions, and rates for olefin synthesis correlated with donor properties of substituents at C(4).

We recently noted a method for the stereospecific synthesis of olefins from 3-hydroxycarboxylic acids
which is based on W(VI) complex catalysis and which involves in situ generated B-lactone intermediates.! Since
these W(VI) complex catalysts are Lewis acidic, we were interested to learn if acid-labile functionality could
survive this reagent system.2 Accordingly, we examined our methodology in the context of (oi-
alkylidene)tetrahydrofuran synthesis from appropriate hydroxy acid precursors. We find that such sensitive
products can indeed be prepared under catalytic conditions, and that qualitative relative rates for product
formation are in accord with observations3 and predictions? made for decarboxylation of simple B-lactone
analogs. Tetra-, tri-, and dialkyl substituted olefins were all made with comparable ease, including cases in
which spirocyclic B-lactone intermediates occurred; in contrast, (0-alkylidene)tetrahydrofurans were formed far
more slowly, and only when dialkyl or activated phenyl substitution were present at C(4).

3-Hydroxycarboxylic acid precursors were prepared’ by aldol condensation between the dianion of
tetrahydro-2-furoic acid and an aldehyde or ketone.6 For example, an approximately 1:1 mixture of threo-
3-hydroxycarboxylic acid 2a (R = H; R = Ph) and its erythro isomer (R1 = Ph; Rz = H) was obtained when
the dianion of 1 was treated with benzaldehyde. Only the threo isomer could be isolated by column
chromatography (the erythro isomer apparently decomposed during chromatographic separation on the silica).
When 2a (44 mg, 0.2 mmol) was reacted with a catalytic amount (3.4 mg, 0.01 mmol, 0.05 equiv) of WOCl, at
150 °C for 15 hrs in acetonitrile, ecnol ether 4a7 (6.4 mg, 0.04 mmol, 20%) and hydrolysis product’
hydroxyketone 5a% (5.3 mg, 0.8 mmol, 15%) were separated. The yield of 4a was improved by simply adding
Proton Sponge® (0.2 equivalent) to the reaction medium.

Reactivities of threo and erythro hydroxycarboxylic acids!® were comparable, and we note facile
isomerization between E and Z isomers of 4; chloroform solutions of pure isomers equilibrated (E: Z = 1:5) in
several hours (X = OMe) to a few days (X = NO,) at room temperature. As expected for an asynchronous
transition state for B-lactone decarboxylation,4 qualitative relative rates for olefin synthesis from para-substituted
analogs of 2a varied as CH30 (2b) > H > NO2 (2¢).12 Decarboxylation of independently preparedi2.13
B-lactones proceeded much faster than overall enol ether formation, so decarboxylation can not be rate limiting
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for the overall reaction and P-lactone concentration did not build up during this process. Therefore it seems
likely that tungsten-catalyzed B-lactone synthesis, too, correlates with donor properties of "R", since these donor
properties should affect the nucleophilicity of the hydroxyl group in the context of the lactonization step;
apparently, oxygen substitution at C(3) inductively retards both processes.14
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Hydroxy Acid 2 -Temp. (°C) Time (hr) (%)4 E :Z Turnovers

R;=H; Ry =Ph, 2a (threb)~_ 1502 72 50 1:5 10

R} =Ph;Rz=H 1502 72 50 1:5 10
+2a (1:1)

R =H; Ry = C¢H40CH3, 2b 1408 24 50 1:5 10

R; = CsH4OCH3; R2 =H 1408 24 63 1:5 13
+2b (1:1)

Rj =H; Rz = C¢H4NO2, 2¢ 1652 100 15 1:5 3.0

R} = CgH4NO2; R2=H 1652 100 12 1:5 24
+2¢ (1:1)

R1 =R = (CHz)g, 2d 150 24 50 - 5.0

R) =R = CHj3, 2e 145b 24 27 - 2.7

Ry = Ry = CH3CHj, 2f 150 20 36 - 3.6

80.05 equiv. WOCl4, 0.2 equiv. Proton Sponge ;? 0.1 equiv. WOC&, 0.5 equiv. Proton Sponge
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